The precedence diagram method is a tool for scheduling activities in a project plan. It is a method of constructing a project schedule network diagram that uses boxes, referred to as nodes, to represent activities and connects them with arrows that show the dependencies.
- Critical tasks, noncritical tasks, and slack time
- Shows the relationship of the tasks to each other
- Allows for what-if, worst-case, best-case and most likely scenario
Key elements include determining predecessors and defining attributes such as
- early start date..
- late start date
- early finish date
- late finish date
- duration
- WBS reference
The critical path method (CPM) is a project modeling technique developed in the late 1950s by Morgan R. Walker of DuPont and James E. Kelley Jr. of Remington Rand.[2] Kelley and Walker related their memories of the development of CPM in 1989.[3] Kelley attributed the term “critical path” to the developers of theProgram Evaluation and Review Technique which was developed at about the same time by Booz Allen Hamilton and the U.S. Navy.[4] The precursors of what came to be known as Critical Path were developed and put into practice by DuPont between 1940 and 1943 and contributed to the success of the Manhattan Project.[5]
CPM is commonly used with all forms of projects, including construction, aerospace and defense, software development, research projects, product development, engineering, and plant maintenance, among others. Any project with interdependent activities can apply this method of mathematical analysis. Although the original CPM program and approach is no longer used,[6] the term is generally applied to any approach used to analyze a project network logic diagram.
Originally, the critical path method considered only logical dependencies between terminal elements. Since then, it has been expanded to allow for the inclusion of resources related to each activity, through processes called activity-based resource assignments and resource leveling. A resource-leveled schedule may include delays due to resource bottlenecks (i.e., unavailability of a resource at the required time), and may cause a previously shorter path to become the longest or most “resource critical” path. A related concept is called the critical chain, which attempts to protect activity and project durations from unforeseen delays due to resource constraints.
Since project schedules change on a regular basis, CPM allows continuous monitoring of the schedule, which allows the project manager to track the critical activities, and alerts the project manager to the possibility that non-critical activities may be delayed beyond their total float, thus creating a new critical path and delaying project completion. In addition, the method can easily incorporate the concepts of stochastic predictions, using the program evaluation and review technique (PERT) and event chain methodology.
Currently, there are several software solutions available in industry that use the CPM method of scheduling; see list of project management software. The method currently used by most project management software is based on a manual calculation approach developed by Fondahl of Stanford University.