LAME

LAME is a free software codec used to encode/compress audio into the lossy MP3 file format.

The name LAME is a recursive acronym for “LAME Ain’t an MP3 Encoder”.[1] Around mid-1998, Mike Cheng created LAME 1.0 as a set of modifications against the “8Hz-MP3” encoder source code. After some quality concerns raised by others, he decided to start again from scratch based on the “dist10” MPEG reference software sources. His goal was only to speed up the dist10 sources, and leave its quality untouched. That branch (a patch against the reference sources) became Lame 2.0. The project quickly became a team project. Mike Cheng eventually left leadership and started working on tooLAME (an MP2 encoder).

Mark Taylor then started pursuing increased quality in addition to better speed, and released version 3.0 featuring gpsycho, a new psychoacoustic model he developed.

http://sourceforge.net/projects/lame/files/lame/3.99/

http://www.majorgeeks.com/files/details/lame.html

http://gabriel.mp3-tech.org/lame/

http://www.rarewares.org/mp3-lame-libraries.php

A few key improvements, in chronological order:

  • May 1999: a new psychoacoustic model (gpsycho) is released along with LAME 3.0.
  • June 1999: The first variable bitrate implementation is released. Soon after this, LAME also became able to target lower sampling frequencies from MPEG-2.
  • November 1999: LAME switches from a GPL license to an LGPL license, which allows using it with closed-source applications.
  • May 2000: the last pieces of the original ISO demonstration code are removed. LAME is not a patch anymore, but a full encoder.
  • December 2003: substantial improvement to default settings, along with improved speed. LAME no longer requires user to use complicated parameters to produce good results.
  • May 2007: default variable bitrate encoding speed is vastly improved.

Like all MP3 encoders, LAME implements some technology covered by patents owned by the Fraunhofer Society and other entities.[2] The developers of LAME do not themselves license the technology described by these patents. Distributing compiled binaries of LAME, its libraries, or programs that derive from LAME in countries that recognize those patents may be patent infringing.

The LAME developers state that, since their code is only released in source code form, it should only be considered as an educational description of an MP3 encoder, and thus does not infringe any patent by itself when released as source code only. At the same time, they advise users to obtain a patent license for any relevant technologies that LAME may implement before including a compiled version of the encoder in a product.[3] Some software is released using this strategy: companies use the LAME library, but obtain patent licenses.

In November 2005, there were reports that the Extended Copy Protection rootkit included on some Sony Compact Discs included portions of the LAME library without complying with the terms of the LGPL.[4]

Audacity is a free digital audio editor and recording application, available for Windows, Mac OS X, Linux and other operating systems.[5][4] Audacity was started by Dominic Mazzoni and Roger Dannenberg at Carnegie Mellon University.[1] As of 10 October 2011, it was the 11th most popular download from SourceForge, with 76.5 million downloads.[7] Audacity won the SourceForge 2007 and 2009 Community Choice Award for Best Project for Multimedia.[8][9]

La aritmética de Trachtenberg

Así como Viktor Emil Frankl desarrollo la logoterapia para superar los rigores de los campos de concentración Nazi, Jakow Trachtenberg ocupo su mente en desarrollar un sistema de aritmética mental al verse en la misma situación.

El sistema Trachtenberg de rápido cálculo mental, similar a las matemáticas Védicas, consiste en un conjunto de patrones para realizar operaciones aritméticas. Los algoritmos más importantes son multiplicación,división, y adición. El método también incluye algoritmos especializados para realizar multiplicaciones por números entre 5 y 13.

Multiplicación por 11

Abusando de la notación

(11)a = 11Σai10i =

an10n+1 + [Σj=0n-1(aj+aj+1)10j ]+ a0

Multiplicación por 12

(12)a = 12Σai10i =

an10n+1 + [Σj=0n-1 (aj+2aj+1)10j ]+ 2a0

Multiplicación por 6

Definiendo

bj = aj/2, donde / denota división entera

cj = aj mod 2

tenemos

aj = 2bj + cj

(6)a = (10/2)Σai10i  + Σai10i =

Σbi10i+1 + Σ(ai + 5ci)10i

bn10n+1 + [Σj=1n(aj + 5cj + bj-1)10j ]+ (a0 + 5c0)

Expresando el algoritmo en python:

def x6(number):
previous = 0
result = 0
power_of_10 = 1
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result =
(digit + odd_term + previous ) *
power_of_10 + result
previous = digit//2
power_of_10 *= 10
number = number // 10
result = previous * power_of_10 + result
return result

Multiplicación por 7

De manera similar al caso anterior:

aj = 2bj + cj

(7)a = (10/2)Σai10i  + Σ2ai10i =

Σbi10i+1 + Σ(2ai + 5ci)10i

bn10n+1 + [Σj=1n(2aj + 5cj + bj-1)10j ]+ (a0 + 5c0)

Expresando el algoritmo en python:

def x7(number):
previous = 0
result = 0
power_of_10 = 1
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result =
(2*digit + odd_term + previous ) *
power_of_10 + result
previous = digit//2
power_of_10 *= 10
number = number // 10
result = previous * power_of_10 + result
return result

Multiplicación por 5

De manera similar al caso anterior:

aj = 2bj + cj

(5)a = (10/2)Σai10i   =

Σbi10i+1 + Σ(5ci)10i

bn 10n+1 + [Σj=1n(5cj + bj-1)10j ]+ (5c0)

Expresando el algoritmo en python:

def x5(number):
previous = 0
result = 0
power_of_10 = 1
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result =
(odd_term + previous ) *
power_of_10 + result
previous = digit//2
power_of_10 *= 10
number = number // 10
result = previous * power_of_10 + result
return result

Multiplicación por 9

Definiendo

b = 10n+1 – Σj=0naj , o sea el complemento a 10 de a

tenemos

(9)a = 10a –a =

10a –a + b – b =

10a + b – 10n+1 =

(an – 1)10n+1 + [Σj=1n(bj + aj-1)10j ]+ (b0 )

Expresando el algoritmo en python:

def x9(number):
previous = number%10
result = 10 - previous
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
result =
(9 - digit + previous ) *
power_of_10 + result
previous = digit
power_of_10 *= 10
number = number // 10
result =
(previous-1) * power_of_10 +
result
return result

Multiplicación por 8

Definiendo

b = 10n+1 – Σj=0naj , o sea el complemento a 10 de a

tenemos

(8)a = 10a –2a =

10a –2a +2 b – 2b =

10a + 2b – (2)10n+1 =

(an – 2)10n+1 + [Σj=1n(2bj + aj-1)10j ]+ (2b0 )

Expresando el algoritmo en python:

def x8(number):
previous = number%10
result = 2*(10 - previous)
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
result =
(2*(9 - digit) + previous ) *
power_of_10 + result
previous = digit
power_of_10 *= 10
number = number // 10
result =
(previous-2) *
power_of_10 + result
return result

Multiplicación por 3 y por 4

Los algoritmos para multiplicar por 3 y por 4 combinan las ideas usadas en la multiplicación por 5 y por 9.

Definiendo

b = 10n+1 – Σj=0naj , o sea el complemento a 10 de a

ai = 2ci + di, donde

ci = ai/2

di = ai mod 2

tenemos

(4)a = 5a –a =

10c + 5d + b – 10n+1

(3)a = 5a –2a =

10c + + 5d + 2b – (2)10n+1

Expresando los algoritmos en python:

def x3(number):
digit = number%10
result = 2*(10 - digit)
if digit % 2:
result += 5
previous = digit // 2
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result +=(2*(9 - digit) + odd_term + previous ) * power_of_10
previous = digit//2
power_of_10 *= 10
number = number // 10
result = (previous-2) * power_of_10 + result
return result

def x4(number):
digit = number%10
result = (10 - digit)
if digit % 2:
result += 5
previous = digit // 2
power_of_10 = 10
number = number // 10
while (number):
digit = number%10
odd_term = 5 if digit%2 else 0
result +=((9 - digit) + odd_term + previous ) * power_of_10
previous = digit//2
power_of_10 *= 10
number = number // 10
result = (previous-1) * power_of_10 + result
return result

Referencias

La historia de π (pi)

Una de las experiencias más satisfactorias para mi ha sido leer A history of PI de Petr Beckmann.

Aunque los logros específicos del saber humano se dan a través de individuos al ver la historia el contexto social parece ser determinante para el desarrollo tecnológico y el entendimiento científico. Como dijo alguien con respecto a la bomba atómica:

 El secreto es saber que se puede hacer.

Por otro lado, los genios son cosa rara. Consideramos el siglo veinte y lo que va del veintiuno como superiores al resto de la historia humana en términos de entendimiento científico y avance tecnológico pero tal vez todavía no terminamos de aprehender lo que Newton percibió y plasmo en su obra hace 300 años.

Pi es interesante porque el circulo es interesante. El circulo es una forma ideal abstracta que no existe en la realidad pero también es la forma de muchos objetos de la vida diaria.

Algunas personas pueden entender que un objeto redondo es aproximadamente circular pero que si medimos con suficiente precisión no hay círculos perfectos en el mundo. Para algunos lograr este salto de abstracción no es una posibilidad y logran demostrar que pi es igual 20612/6561, que en términos prácticos, en términos de medir una mesa, o rebanar un pastel esta más que bien, pero en términos de capacidad de desarrollar tecnología, por ponerlo de alguna manera, es un callejón sin salida. La practicidad es un duende travieso que nos permite salir adelante ante los retos de la vida pero que si nos descuidamos nos lleva por los senderos del estancamiento y de la corrupción. Empecemos por valorar a los que pueden, tratemos de entender. El primer paso, según alcohólicos anónimos es aceptar el problema. La educación es el camino, trabajemos para que nuestros niños sepan observar, pensar, discutir, y hacer, no para que sean científicos, sino para que todos vivamos mejor.

Un lector del libro de Beckmann comparte su frustración en Internet:

I think my main problem with the book is that I was looking for an interesting narrative that explores the impact of pi from a cultural and personal point of view. What I got was a mathematical primer on pi, heavy on formulas, charts and graphs, peppered with bland historical facts easily obtained from general knowledge history books and encyclopedias.

Es curioso el comentario porque el libro es ameno, atestiguado por sus ventas, y las matemáticas son un lenguaje para hablar de cosas como pi, es decir son parte de la narrativa. Parece que la comunicación entre el hemisferio izquierdo y el derecho del cerebro no es tan fácil. Para algunos, como Pitágoras, los números son mágicos y su manipulación un camino para controlar el destino.

Volviendo a pi, veamos como expresarlo como una fracción.

Empecemos con una aproximación
pi=3.141592653589793+.
=
3 + 0.14159…

Tomado el reciproco de la parte fraccionaria
1
3 + ————
7.06251…

Iterando el procedimiento
1
3 + —————-
7 + 0.06251…

1
3 + ——————-
1
7 + ————-
15.99658…

Si la parte decimal es mayor a .5 podemos acercarnos por arriba
1
3 + —————————
1
7 + ———————
1
16 – ————–
292.98696…

Simplificando

1
3 + ———-
1
7 + —-
16

1
3 + ——-
113
—–
16

16
3 + —–
113

335
—–
113

Las primeas cuatro aproximaciones a pi corresponden con valores históricos;

3/1 3.000000000000000
22/7 3.142857142857143
355/113 3.141592920353983
104348/33215 3.141592653921421

Referencias: