Earned value management

Earned value management (EVM), or Earned value project/performance management (EVPM) is a project management technique for measuring project performance and progress in an objective manner.

Earned value management is a project management technique for measuring project performance and progress. It has the ability to combine measurements of the project management triangle:

  • Scope
  • Schedule, and
  • Costs

In a single integrated system, Earned Value Management is able to provide accurate forecasts of project performance problems, which is an important contribution for project management.

Early EVM research showed that the areas of planning and control are significantly impacted by its use; and similarly, using the methodology improves both scope definition as well as the analysis of overall project performance. More recent research studies have shown that the principles of EVM are positive predictors of project success.[1] Popularity of EVM has grown in recent years beyond government contracting, in which sector its importance continues to rise[2] (e.g., recent new DFARS rules[3]), in part because EVM can also surface in and help substantiate contract disputes.[4]

Essential features of any EVM implementation include

  1. a project plan that identifies work to be accomplished,
  2. a valuation of planned work, called Planned Value (PV) or Budgeted Cost of Work Scheduled (BCWS), and
  3. pre-defined “earning rules” (also called metrics) to quantify the accomplishment of work, called Earned Value (EV) or Budgeted Cost of Work Performed (BCWP).

EVM implementations for large or complex projects include many more features, such as indicators and forecasts of cost performance (over budget or under budget) and schedule performance (behind schedule or ahead of schedule). However, the most basic requirement of an EVM system is that it quantifies progress using PV and EV.

There is a measurement limitation for how precisely EVM can be used, stemming from classic conflict between accuracy and precision, as the mathematics can calculate deceptively far beyond the precision of the measurements of data and the approximation that is the plan estimation. The limitation on estimation is commonly understood (such as the ninety-ninety rule in software) but is not visible in any margin of error. The limitations on measurement are largely a form of digitization error as EVM measurements ultimately can be no finer than by item, which may be the Work Breakdown Structure terminal element size, to the scale of reporting period, typically end summary of a month, and by the means of delivery measure. (The delivery measure may be actual deliveries, may include estimates of partial work done at the end of month subject to estimation limits, and typically does not include QC check or risk offsets.)